
In,. 1. Heor Mars TransJer. Vol. 33. No. 12. pp. 2721-2734. 1990 0017-9310 9053.00+0.00 

Printed IO Great Britain c 1990 Pcrgamoa Press plc 

A numerical method for phase-change problems 
CHARN-JUNG KIM and MASSOUD KAVIANY 

Department of Mechanical Engineering and Applied Mechanics. The University of Michigan, 
Ann Arbor, MI 48109, U.S.A. 

(Receired 6 September 1989 und injtudform I Febrrrury 1990) 

Abstract-A highly accurate and efficient finite-difference method for phase-change problems with multiple 
moving boundaries of irregular shape is developed by employing a coordinate transformation that immo- 
bilizes moving boundaries and preserves the conservative forms of the original governing equations. The 
numerical method is first presented for one-dimensional phase-change problems (involving large density 
variation between phases, heat generation. and multiple moving boundaries) and then extended to solve 
two-dimensional problems (without change of densities between phases). Numerical solutions are obtained 
non-iteratively using an explicit treatment of the interfacial mass and energy balances and an implicit 
treatment of the temperature field equations. The accuracy and flexibility of the present numerical method 
are verified by solving some phase-change problems and comparing the results with existing analytical. 
semi-analytical and numerical solutions. Results indicate that one- and two-dimensional phase-change 

problems can be handled easily with excellent accuracies. 

1. INTRODUCTION 

THE SOLUTION of moving boundary problems with 
phase changes has been of special interest due to the 
inherent difficulties associated with the nonlinearity 
of the interface conditions and the unknown locations 
of the moving boundaries. Exact closed-form solu- 
tions of phase-change problems are available only for 
a limited number of cases [I]. A variety of approxi- 
mate analytic solution techniques have been 
developed, including the heat balance integral [2], 
variational [3], embedding [4], and perturbation tech- 
niques [5,6]. In addition, efforts to solve phase-change 
problems numerically have produced such diverse 
solution methods as the enthalpy [7,8], apparent heat 
capacity [9], isotherm migration [IO], and coordinate 
transformation methods [l I-161 ; these methods have 
been introduced by researchers mainly to overcome 
the difficulties in handling moving boundaries. 

Of the numerical methods, coordinate trans- 
formation techniques have been widely used because 
of the advantage of working with fixed domains (the 
moving boundaries are immobilized in the trans- 
formed coordinates) and a good review in this 
approach is provided in the work of Crank [ 171. How- 
ever, the simplification obtained by employing coor- 
dinate transformations introduces greater com- 
plexities into the transformed governing equations. 
Such complexities seem to become substantial with an 
increase in the number of moving boundaries 
especially for multi-dimensional problems, since the 

t For the purpose of generality, nondimensionalization 
which is useful in treating a particular problem is not con- 
sidered in the formulation and in the presentation of the 
solution method. 

transformed equations were derived separately for 
each phase. 

In this paper, troublesome complexities in the trans- 
formed equations are effectively eliminated through 
the careful use of a coordinate transformation (the 
well-known Landau transformation). The present 
transformed equations also preserve the conservative 
forms, which enable the mass and heat fluxes across 
the control volume faces to be consistent: thus the 
conservation principle is satisfied exactly in each 
phase. Furthermore, multiple moving boundaries can 
be treated easily since the transformation is performed 
only for a representative phase. 

The transformed conservation equations are solved 
numerically with an implicit finite-difference method 
described in ref. [ 181. Iterations characterizing a fuily- 
implicit method are avoided by the adoption of an 
efficient algorithm suggested by Sparrow and Chuck 
[ll] which is extended here to account for density 
variation between phases for the case of one-dimen- 
sional (I-D) geometry. By noting that additional con- 
vective terms are created as a result of coordinate 
transformations [12], the performance of various 
numerical schemes-central difference, upwind, 
hybrid, and power law schemes (the details of these 
schemes are explained in ref. [18])-on the accuracy 
and efficiency are investigated in this study. 

The performance characteristics of the present 
numerical solution method, which can be applied to 
a broad class of phase-change problems due to its 
remarkable flexibility, are demonstrated by solving 
specific problems that involve volumetric effects, heat 
generation, and multiple moving boundaries. 

2. FORMULATION IN 1-D GEOMETRY 

The present numerical formulation? is presented in 
this section for 1-D geometry. Extension to multi- 
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NOMENCLATURE 

u in finite-difference equation r’, .e+ ‘!‘(n+ I) 
A dimensionless heat generation .Y, )‘, z spatial coordinates 
6 source term X,, 2, variables 
Bi Biot number i,;, 2, positions of boundaries. 
c 
d 

specific heat 
constant Greek symbols 

/” 

diffusion conductance thermal diffusivity 

; 
variable. equation (I) j: variable 

& 
mass flow rate, equation (IO) 4 phase thickness 
mass flow rate across the interface ,$i ‘II transformed coordinate 

14 specific enthalpy Vi., positions of control volume faces in each 
4, latent heat of gas/liquid phase change phase, equation (I 5) 
&r latent heat of liquid/solid phase change 0 angular coordinate 
11, convective heat transfer coefficient L similarity constant 
i1* reference enthalpy < transformed coordinate 
H height of a cylinder P density ratio 

J, energy flow rate, equation (IO) P, density 
k, thermal conductivity 7 dimensionless time 
I reference length Tc dimensionless freezing time 

L, absolute value of L, denotes a latent heat rlu, szc, ~~~ dimensionless freezing times 
Icr, number of control volume faces within from ref. [22] 

each phase 4 superheating parameter. 
n geometry index 
N total number of phases Superscripts 

PI exponent, equation ( 15) 0 
. 

quantmes at ttme lo 
P Peclet number l/2 quantities at time t,, + jAf 

s, heat generation per unit volume quantities at boundaries. 
Ste Stefan number 
I time Subscripts 

r, temperature distribution e, w east and west control volume faces 

t temperature at the boundary 2, E, W east and west grid points 

TZ temperature at infinity i phase index 

At time increment i node index in each phase 

r1, velocity M, m+ 1 phase index 

v, variable. equation (11) P grid points of interest. 

dimensional geometry is straightforward and will be 
presented later. It is assumed here that all phases 
are separated by sharp boundaries (or interfaces). 
Thermophysical properties are allowed to vary within 
each phase as well as between different phases. In 
particular, densities are assumed to be constant within 
each phase, but they may differ between phases. 
Therefore, I-D convective motions due to the voiu- 
metric effects can be considered. 

One of the most general situations in I-D phase- 
change problems is illustrated in Fig. I. Although the 

FIG. I. Schematic of configuration considered-a system 
composed of 1%’ distinguishable phases. 

configuration is shown for a planar geometry, the 
argument that follows is equally applicable to a cyl- 
indrical or spherical geometry. 

Suppose that N phases are placed along the coor- 
dinate, as shown in Fig. 1. Each boundary is either 
fixed or moving and can be an interface undergoing 
phase change or a boundary such as the edge of a 
thermal boundary layer and a fixed solid wall, etc. 

The heat transfer process in each phase is governed 
by the unsteady, 1-D heat equation along with the 
mass continuity equation 

where /t = 0, I, and 2 for a planar. cylindrical, and 



spherical geometry, respectively, and an index i that 
ranges from I to N is assigned to each phase so mul- 
tiple phases can be handled with ease. The specific 
enthalpy It, is assumed to depend only on temperature. 
and S, is the heat generation per unit volume within 
phase i. The quantity f;(t) associated with the velocity 
field u, is included to account for any 1-D motions 
caused by volume changes between phases. 

Now consider one of the interfaces at which a phase 
transition is occurring (at its phase temperature i,,,), 
and the phases adjacent to that interface. Let J?‘,, be 
the position of the interface. The interface conditions 
that serve as boundary conditions of the adjacent 
phases are expressed as [ 19) 

where all quantities are evaluated at the interface f,,,,. 
Equation (3) indicates the interface temperature is the 
temperature of phase equilibrium (for the prevailing 
pressure). Both the sides of equation (4) represent the 
mass flow rates per unit area across the interface and 
are equal to each other according to the conservation 
of mass. Equation (5) states the balance of thermal 
energy delivered to the interface. One of the con- 
duction terms in equation (5) may be replaced by the 
convective heat fluxes or by the radiative heat fluxes, 
etc., depending on the problem of interest (treatment 
of such cases is straightforward and requires only a 
slight modification in the argument that follows ; thus. 
it is excluded for brevity). 

The introduction of dimensionless coordinates q,‘s 
that immobilize the moving boundaries eliminates the 
difficulty in handling the unknown positions of the 
moving boundaries 

X-8_, q, = 2 
di ’ 

i= 1,2,3 ,..., N. (6) 

Since 8 ,_, <xdfi in phase i and 6i=T;-y,_r, 
each phase is then characterized by 3. SOLUTION PROCEDURE 

phase i : O<rli< 1, i= 1,2,3 ,..., N (7) 

for all time. A rigorous argument about the validity 
of the equalities in equation (7) is insignificant in the 
solution method and thus omitted. 

Without sacrificing mathematical simplicity, the 
transformation of the governing equations (1) and (2) 
gives [20] 

Before the solution method is presented. the role 
played by the interfacial mass balance in acquiring the 
velocity fields is stated briefly. The interfacial mass 
balance (12) can be rephrased as 

where 

c’, = -&+I. (14) 

(8) 
In general, there is at least one phase the value 1; of 
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V;‘i(l,. 0 = -$ (X,(q,, I))“+ ‘, 

Xi(%. 0 = r1,4(~)+x- I(0 (11) 

where I < i < N. Note that the value of X, is the same 
as that of the coordinate s so that J?,,-, < X, < f,. 
Note also that the transformed equations degenerate 
to the original governing equations unless the pos- 
itions of the boundaries change with time and that 
the conservative forms are preserved in the present 
transformation (the advantage of the conservative 
forms is that the conservation principle is obeyed 
exactly in each phase when a finite control-volume 
integration method is used to derive discretization 
equations [IS]). After integration over time and over 
the control volume in 9, coordinates. the first terms in 
equations (8) and (9) denote the net change of the 
mass and the energy, respectively. contained in that 
control volume. The total mass flux F, combines the 
pseudo-convection terms created by the immo- 
bilization of the moving interfaces [I?] and the con- 
vective terms due to physical motions of adjacent 
phases (which, if present, are caused by density vari- 
ation between phases). The total heat flux J, represents 
both the diffusional heat flow rates and the net con- 
vective enthalpy How rates. 

The interface boundary conditions, equations (4) 
and (5), are then expressed as 

F,,,= F,,, = k=, (12) 

Jm = Jr,,+, (13) 

where all values are evaluated at 2,” (i.e. at qm = 1 

and qm+ , = 0), and the mass flow rate across the 
interface J?,,, is defined as c”‘,, for future use. Note that 
the interracial mass and energy balances are no more 
than the conditions of continuity of the flux terms in 
the transformed governing equations. 
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qw lie 
FIG. 2. Numerical grids and control volume Faces for one- 

dimensional problems. 

which is known for all time (usually such a phase is 
stagnant, i.e. f; = 0); let it be phase m without a 
loss of generality. All other values of J; can then 
be determined successively from the above equation 
starting with fm if all fii obtained from the interfacial 
energy balances are prescribed. 

The transformed conservation equations (8) and 
(9) are similar to those of the diffusion/convection 
problems (without phase change) discussed in the 
work of Patankar [I81 and can be solved by an implicit 
method based on the finite control-volume integration 
procedure described in ref. [ 181. The positions of the 
control volume faces are deployed in each phase 
according to the relation 

j-1 P, 

rli.j = M,_ I 3 ( > i= 1,2,3 ,..*, M, (15) 

where M, is the total number of control volume faces 
in phase i, and p, is an exponent suited to the problem. 
The grid points are placed midway between the con- 
trol volume paces so that a total of (M, - I) grid points 
are distributed inside each phase. Since the trans- 
formed conservation equations (8) and (9) have the 
same forms for different phases except the phase index i, 
discretization equations are derived only for phase i 
yet applicable to other phases. For a typical control 
volume. shown in Fig. 2, the integration of equation 
(9) with the aid of equation (8) gives (for convenience. 
constant properties are assumed and the subscript i is 
dropped except in 6, and f,- ,) 

where 

nprp = aETE+a,T,+b (16) 

UP = n~+~w+a,O--S~(Al’)~, 
PC(A V): a; = ___ 

At 

De = 

oE = D,A(IP,I)+maxt { -cF,,OJ 

a, = D,A(IP,I)+max {cF,,O) 

X3 
hi(Aq)c ’ 

D, = > P, = 
cFe - 
DC 

PW = 

b = S,(AV),+a,OT;, (AV), = V,- I’,, 

cf-w 
DW 

t max {A, BJ denotes the greater of A and B. 

Table I. Function A(lPl) for different schemes [18] 

Scheme 

Central difference 
Upwind 
Hybrid 

Power law 

Formula for A( 1 PI) 

I -O.j\Pl 
I 

max (0. I -O.SjPIj 
max (0, (I -O.llPI)“~ 

Here, the known values at time lo (i.e. the values at 
the beginning of the Lime step) are denoted by using 
the superscript 0. In accordance with the implicit 
difference, all other values (i.e. without a superscript) 
are to be determined ; SC and Sp arise from the lin- 
earization of the source terms [I81 ; and D and P (with 
the subscripts dropped) indicate the diffusion con- 
ductances and Peclet numbers, respectively. The func- 
tion A(IPl) can be selected from Table I (the same as 
Table 5.2 in ref. [l8]) for the desired scheme. Non- 
constant values of thermal conductivity and specific 
heat can be handled in the same way as in ref. [ 181. 

It is interesting to note that, although the trans- 
formed equations are integrated over the transformed 
coordinates, all the quantities in the resulting dis- 
cretization equations have exactly their own physical 
interpretation. For example. (A VJi corresponds to 
the actual volume enclosed by two adjacent control 
volume faces at time lo. The fact that (A V), changes 
with time represents in effect the stretching/ 
contraction of the moving control volume in the 
physical coordinates which corresponds to the fixed 
control volume in the transformed coordinates. 

The interfacial energy balance at f”,,. or equation 
(I 3), is discretized as 

x(rm.,-t,,) = ~“,h,,,+,(i‘,)+[D,,+,il(lP,~,,I) 

+max {-cm,+ I~m,O)l(im- T,,, ,.d 

where 

Orn = &,(A@, ’ 
D 

Rmk,_, 

m+ ’ = &,+ , (Av)m+ I 

CP Cm+l 2;, 
P/F, P”,,, =-iy----. 

m ,“T I 
(17) 

The indices and (m+ I) 
to the ,( f,,,) 

of phase m and phase (m+ I) at 
the 

of the to the 
as shown in Fig. 3 and (Av)~ and 

(A&+, are the distances between the interface Ic;, 
and the adjacent grid points. Equation (17) provides 
an implicit expression for F,,, : in the case of a central 
difference scheme 



A numerical method for phase-change problems 2125 

! phase(m) ! phase (m+l) ! 

%n 

FIG. 3. Grid-point cluster near the interface f,,, at phase 
temperature T,. 

P,” = D,,,(T,.a-j,)+D,+,(r,+,.a-f,) 
L, -OSc,(T,., - T,) +o.sc,+ , (T”,, ,.a - 7-m) 

(18) 

where L,,, = h,, , (f,,,) -/I,( f,,,), and the absolute 
value of L,, represents the latent heat. p,,, can also be 
obtained algebraically for other numerical schemes 
while trial and error is necessary for a power law 
scheme. 

Let us suppose that all additional boundary con- 
ditions are specified for a particular problem, in 
addition to the phase interface conditions discussed 
previously. In solving the set of finite-difference equa- 
tions (16) by a tridiagonal matrix algorithm, the 
unknown quantities fi9s and F,‘s are required as input 
(values of Xi’s, Vi’s and 6,‘s can be derived from yi’s). 
While fi’s are evaluated at time (t,+At) in accord- 
ance with the implicit difference, Fi’s are evaluated at 
time (fO + IAt) (by interpreting an implicit difference 
as a central difference representation with respect to 
time (to + iA{) [ 1 I]) and discretized as 

where the superscript l/2 indicates the quantities at 
time (t,,+ iAt). Therefore, all f;“‘s and fi’s are 
required to determine the unknown temperature dis- 
tributions T,‘s at time (to +Af). The needed values 
can be obtained via the interracial mass and energy 
balances as follows. 

First, fz is determined by evaluating the interfacial 
energy balance (17) at time t,. (df,,,/dt)’ and fz+, 
are calculated from the interfacial mass balance (14) 
with the known values of fz, pj,. Next, p,,, at time 
(to + iAt) is obtained as 

(20) 

and X,!,’ then follows. It should be noted here that 
there can be boundaries for which the above pro- 
cedure is unnecessary since fi(t)‘s may already be 
assigned, depending on the problem. For example, 
f,, indicates the origin of the system and remains 
unchanged with time (i.e. 2o(t) = 0), as shown in 
Fig. 1. Thus, all values of f/‘*‘s can be determined by 

following the above procedure or by prescribing them. 
All S! “s then follow immediately. Similarly, PA’ is 
determined by updating fi’s and Si’s in equation (17) 
with the quantities at time (to+ IAf), except the tem- 
perature fields. In addition, (dti,,,/df)‘S’ and fki, are 
obtained from equation (14). Finally, r’, and f,,, at 
time (fO + At) are determined as 

At. fm = ((r~+l)~~}“~+“. 

(21) 

It then becomes possible to solve the unknown tem- 
perature fields 7;‘s at time (t,+Af) with known values 
of fi’s and f,’ ?‘s, provided the additional boundary 
conditions corresponding to a specific problem are 
completely elucidated. 

The advantage of this approach is that it enables 
the solution to march steadily forward in time without 
requiring iterations at each time step while the pos- 
itions of the interfaces are being updated [12]. The 
explicit treatment of the interfacial conditions can still 
assure the conservation of mass fluxes over all phases. 
Although the heat fluxes are also conserved within 
each phase by utilizing the present coordinate trans- 
formation, the heat fluxes at the interfaces may be 
inconsistent due to the explicit treatment of the mov- 
ing boundaries. Those inconsistencies are adjusted by 
updating the positions of the interfaces; thus, the 
generation of parasitical heat sources is forced to van- 
ish at each time step, which assures the overall energy 
conservation within a tolerance. 

4. EXAMPLE PROBLEMS 

The accuracy and flexibility of the present numeri- 
cal method are examined in this section for the case of 
I-D geometry. Particular I-D phase-change problems 
are solved and compared with existing analytical, 
semi-analytical and numerical solutions. 

4. I. Neumann problem with colume changes 
Consider the solidification of a liquid in a semi- 

infinite plane for which phases 1 and 2 are the solid 
and the liquid phases, respectively ; 8, is the solid/ 
liquid interface with L, = h,,; and 2, is the front 
of a thermal boundary layer that diffuses into the 
liquid phase starting at the interface 8,. The 
additional boundary conditions are 

T, (0, f) = fo, T2(j,t) = 7-,(rlz,O) = f,, 

S,(O) =o (To < f, < T,). (22) 

To illustrate the volumetric effects, consider the case 
of p, 2 p2. The dimensionless parameters are 

5L2 k2 
-9 
aI 

k,,p=p= 

(23) 
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where p is a density ratio; 4 a superheating par- 
ameter; and Ste the Stefan number, which is a mea- 
sure of sensible heat to latent heat. Assume that 
k, = kz and Z, = x2 to reduce the number of par- 
ameters. The exact solution shows that 
i,/L = Zi,i(r,f/l’) where I is an arbitrary reference 
length, and j. is a similarity constant obtained by the 
following equation [I] : 

i.Jn e-“* fje- A1 p? 
-_=-_- 
Ste erf i erfc (j.,‘p) (24) 

For a more sensitive test of the quality of the numeri- 
cal method, the positions of the phase interface with 
time are chosen as the compared quantities. There- 
fore, the value of i obtained numerically will be com- 
pared with that from the above equation for the same 
values of p, 4, and Ste. 

A value of 2, is selected to be large enough so that 
grid points near R2 remain thermally dormant and do 
not affect the solution. One simple way to achieve this 
objective is to assume that jZ = CR,, where C is a 
constant factor [12]. Numerical parameters defined 
in equation (15) are set to be M, = 51, .M, = 301, 
p, = 1 .O, p2 = I. I, and C = 500. The assumption that 
a solid layer of thickness ci ,/l = 10mh exists at time 
t = 0 avoids start-up difficulties due to the singularity 
in the initial condition. A linear temperature profile is 
prescribed in the solid phase (considering the thinness 
of the solid layer), while the temperatures of the liquid 
phase are initialized with f,. The time steps are selec- 
ted so that the maximum change in 6, is less than 2% 
at each time step. The effect of this initially prescribed 
solid layer upon the subsequent results vanishes in 
small elapsed times, and the numerical solutions 
nearly follow the exact ones before 6,/l reaches, at 
most, a value of 10m5 for a wide range of parameters. 
Therefore, there is no need to start the calculation with 
the analytic solution as far as a small time solution is 
not the main concern. Thus, calculations continue 
until 6 ,/I = 100. 

Table 2 shows the maximum percentage errors 
between the results for a similarity constant i. from 

the exact solution (equation (24)) and the present 
numerical method during the interval 
IO-’ < d,‘l< IO’. Excellentagreementwith theexact 
solutions over a wide range of parameters is evident 
in Table 2. The results also show the effect of various 
schemes on the accuracy. Although Ste < 5 represents 
the range of interest in most real situations, high Ste- 
fan numbers are included to show the performance of 
various numerical schemes more clearly. The upwind 
scheme gives the least accurate results, while negligible 
differences are observed in the results obtained by 
employing other schemes. The efficiency of the power 
law scheme deteriorates due to the additional work 
needed to find roots by trial and error (see equation 
(I 7)). In general, both central difference and hybrid 
schemes yield good results in addition to providing 
simple solutions to the interfacial energy balance (in 
most phase-change problems, the interface moves 
relatively slow, therefore allowing the use of the cen- 
tral difference scheme [16]). For this reason, the cen- 
tral difference scheme is employed to solve the sub- 
sequent examples. 

4.2. Bubble growth problem 

The growth of a spherical bubble in a superheated 
liquid is considered next so the effects of system 
geometry (or n = 2) can be examined. In this system. 
phases I and 2 are the gas and the liquid phases, 
respectively; 2, is the gas,liquid interface with 
L, = -big ; and 8? is the front of a thermal boundary 
layer. In addition 

T, (rl , 7 I) = F, 1 TZ(r]>,O) = t,, R,(O) = 0. 

TI(l,f) = f2 > i, (25) 

with the dimensionless parameters 

The analytic solution by Striven [2l] shows that 
8,/l = 2i.,f(a,t/f2) where the relation between Ste 

and i. is given as 

Table 2. Percentage error in values of L’s for various schemes (compared with the 
exact values of i.‘s in equation (24)) 

.Sre P 4 i Central Upwind Hybrid Power law 

0.01 I 0 0.07059 -0.01 
5 0.05719 -0.09 

0.5 1 0.06742 -0.03 
5 0.05646 -0.10 

1 I 0 0.62006 -0.10 
5 0.14351 -0.13 

0.5 1 0.33505 0.49 
5 0.12936 -0.19 

100 I 0 I A5095 -0.37 
5 0.14874 -1.49 

0.5 I 0.39310 1.00 
5 0.13287 -1.08 

Error(%) = ((n,,, -i.,,,,,,t)/L,,,,,) x 100. 

0.00 -0.01 
-0.38 -0.09 
-0.10 -0.03 
-0.41 -0.10 

0.1 I -0.10 
-2.68 -0.13 
-2.30 
-2.47 

1.73 -0.37 
-5.58 -1.97 
-3.20 I .oo 
-5.15 -1.11 

0.49 
-0.19 

-0.01 
-0.10 
-0.03 
-0.11 
-0.10 
-0.26 

0.08 
-0.31 
-0.33 
-4.42 

0.28 
- 1.96 
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z -- 

Ste = 2;. 
1.- J: i .’ 3 
2 exp A- -.x- 

+2i’(L-~)(j-;)]dx. (27) 

The calculation starts with ,i?,/f = 10e6 and a uniform 
temperature field in the liquid phase at time t = 0. The 
edge of the thermal boundary layer 8, is carefully 
chosen so that it does not affect the heat transfer 
process at the interface f,, and it is allowed to increase 
with 2,. The computations are performed with 
Mz = 101,pz = 2.5. Table 3 shows the maximum per- 
centage errors for E.‘s produced by the present numeri- 
cal method during the interval 10e4 < 2,/l c IO’ and 
by the analytic solutions of equation (27). Good 
agreement exists between the solutions even for a large 
density ratio. Note that the effect of a density change 
becomes insignificant as Ste + 0 for the Stefan num- 
bers defined as above. 

4.3. Inward solidtJicntion problem 

The inward solidification of a saturated liquid in a 
sphere of radius 1 has been treated by many inves- 
tigators [5, 22, 231 for either constant temperature or 
convection at the wall. The case with convection at 
the wall will be considered here, for which 

T,(rl,,t) = f,, 82(O) = 0, 

J2(1,t) =X:h,{T,(I,t)-7-,; (28) 

where phases 1 and 2 are the liquid and the solid 
phases, respectively; 8, is the phase interface with 
L, = -II,,; and 2, is the fixed wall (i.e. f?(t) = I). 
The dimensionless parameters are 

Ste = 
4, -T,) 

-L, 
, &,y. (2% , 

A linear temperature profile with a negligible tem- 
perature drop is prescribed within the solid layer of 
thickness 6*/l = 10e6 at time t = 0, which avoids 
start-up difficulties. An overall energy balance is taken 
from the instant freezing begins (i.e. t = 0) to each 
time step 

I 

s 
.r”p(h-A*) d.y+ Jz(l, t) dt = constant (30) 

II 

Table 3. Maximum percentage errors for 
values of i compared with i.‘s in equation (27) 

P i Se Error(%) 

I 0.01 1.965 x lo-4 -0.40 
0.1 1.682 x IO-’ -0.12 

1 0.4843 -0.63 
1000 0.01 1.965 x lO-4 -0.40 

0.1 1.697x lo-’ -0.1 I 
I 0.6975 -0.26 

Error(%) = ((i,, -Lneriml)/L) x 100. 

which is useful in assessing the validity of the numeri- 
cal solutions in terms of the physical reality. The above 
overall energy balance is checked at every time step 
to determine if it is satisfied within a tolerance (say, 
0.1% for the present example with the reference 
enthalpy /I* being that of the solid phase at its fusion 
temperature). 

Figure 4 shows the timewise variation of p,(t) for 
Ste = 0.5 and three Biot numbers. The values of 2, 
with time are sufficiently close to those of refs. [22, 
231, while some discrepancies are noted as the freezing 
front approaches the center. The time for complete 
solidification of the sphere, t,. is assumed to be equal 
to a time at which 2,/f reaches a value of lo-‘. Table 4 
compares the results for the dimensionless freezing 
time T, (= Z2tc/12) from the approximate analytic 
method [22] with those obtained by the present 
numerical method. The terms tic. rzc, and T:~ mean 
the solidification time T< by evaluating the first one, 
two, and three terms of the approximate analytic solu- 
tions [22], respectively. The disagreement with the 
values from ref. [I?] becomes significant with increas- 
ing Stefan numbers. while good agreement is noted 
for Ste < 0. I. This failure probably arises because the 
convergence of the estimates T,~, sic. and fk from ref. 
[22] becomes weaker with increasing Ste. since only 
the first three terms of the approximate analytic solu- 
tions are considered. 

It is then natural to expect the degree of agreement 
to improve if more than the first three terms of the 
approximate analytic solutions can be included. An 
attempt to include more terms was made for the 
planar case (n = 0) by Pedroso and Domoto [6], who 
developed the exact solutions for the case of Ste < 1 
by including as many terms as desired in their per- 
turbation technique (actually, the first nine terms were 
considered). For this planar case (n = 0). the solutions 
of the dimensionless freezing time for Bi = I, and 
Ste = 0.5 and l.Ogive (Bi)‘(Ste)r, = 1.656 and 1.796, 
respectively, while the corresponding solutions from 
ref. [6] are (Bi)‘(Ste)s, = 1.656 and 1.80-t. respec- 
tively. The difference between these two results is neg- 
ligible, as expected. 

4.4. Phase change with heat generation 

Freezing and melting in a heat-generating. I-D slab 
of thickness 21 is chosen to test the effects of heat 
generation. The I-D slab is initially molten and 
trapped between two semi-infinite walls at tem- 
peratures below the freezing point of the slab. This 
problem was originally studied numerically by 
Cheung et al. [Ill using the method of collocation. 
Only one-half of the system is considered. since the 
heat transfer process is assumed to be symmetrical 
with respect to the centerline of the slab, which is 
taken to be the origin of the system. Here. phases 1 
and 2 are the liquid and the solid phases of a heat- 
generating substance with a uniform heat source 
S2( = S,), respectively. and phase 3 is a cold wall with 
S3 = 0 ; 2, is the liquid/solid interface with L, = 
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0.0 0.2 0.4 0.6 0.6 1.0 1.2 1.4 1.6 1.6 
Ste.? 

FIG. 4. Timewise variation of the freezing front. This work, -; Hill and Kucera (221, --------; 
Tao [‘3]. ---p-. 

Table 4. Dimensionless freezing time of a sphere 
Bi = 0.2 (compared with the results from ref. 1221) 

2.0 I.55 I .42 I.17 I .26 
I.0 2.53 2.55 2.38 2.25 
0.5 4.40 4.51 4.47 4.17 
0.3 9.92 10.09 IO.17 9.81 
0.1 19.09 19.28 19.41 19.08 
0.01 184.1 181.3 184.5 184.5 

-h,r; R2 is the fixed boundary (or R?(t) = I) 
separating two substances; and 2, is the edge of a 
thermal boundary layer in the cold wall. The addi- 
tional boundary conditions are 

T,(4,*0) = f0, T,(rlj*O) = TJ, 

6,(O) = 0 (To > P, > f,) 

$(O,r) = 0, T,(l,t) = T,(O,r). 

Jz(1.r) =J3(O,f), T,(l,r) = i,. (31) 

For brevity, the present calculations are carried out 
when 0 < dZ < I. for which the above system of equa- 
tions is valid (the details are described in ref. [13]). 

The thermophysical properties of a heat-generating 
substance are assumed to be the same in both phases 
and the dimensionless parameters are then 

k3 ~3 SJ' 

k:’ z’ A = kz(T, -T,)’ 
_ . _ ” 

(32) 

t It seems reasonable to neglect the differences contributed 
by the region .r ‘I < - 2, because the two profiles are nearly 
identical rn this region. 

where the case of k3/k2 = x3/r? is considered, which 
simplifies the presentation of the numerical results. 
The initial singularity is avoided following a similar 
procedure to that discussed previously. and special 
care is taken for values of ,?j, which are selected 
continuously to be large enough so the results are not 
affected. By the nature of the problem. the results 
should satisfy the following relation : 

s 

I 
p(h-/I*) d.v--Sit = constant (33) 

I, 

which represents the overall energy balance reflecting 
the adiabatic conditions at the centerline of the slab 
and at infinity, and the contribution of the uniform 
heat generation. The above condition proves to be 
valid within a tolerance of 0.1% throughout the 
results presented below (with h* being that of /I? 
evaluated at f,). 

Figure 5 shows the dimensionless temperatures vs 
the physical distance normalized by the half-width of 
the slab for the case of A = I, 4 = I, Sfe = 2, and 
k3/k2 = 1 where the dimensionless time r (= r,t/l’) is 
used. The dimensionless thickness of the solid layer, 
SZ/l, attains a value of 0.224 at T = 0.05 and achieves 
a maximum of 0.356 at r = 0.29, while the cor- 
responding solutions from ref. [13] give 0.23 at 
r = 0.05, and a maximum of 0.34 at r = 0.3, respec- 
tively. The temperature distributions agree well at the 
initial stage of freezing but deviate significantly as r 
increases. The discrepancies can be explained with the 
aid of the overall energy balance mentioned above. 
The two profiles? corresponding to T = 1.2 show that 
the profile from ref. [ 131 is always beyond that of the 
present study over the ranges shown in Fig. 5. The 
energy associated with the temperature profiles from 
the present numerical method represents the sum of 
the energy initially contained in the system and the 
amount of energy generated and stored within the 
system until T = I .Z within a tolerance of 0. I %. There- 
fore, the results from ref. [ 131 can probably be thought 
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FIG. 5. Dimensionless temperature distribution of the system for the case of A = I. C#J = I, SW = 2, and 
k,/k, = I. This work, --- - --; Cheung er al. [ 131. -. 

to have created parasitical heat sources, and their 

effects on the temperature distribution becomedetect- 
able at a large value of T. 

This argument is consistent with the results shown 
in Fig. 6 which demonstrates the dependence of the 
transient solid layer thickness on the dimensionless 
heat generation for the case of 4 = 1, Ste = 1, and 
k,/k2 = 1. The lifetimes of the solid layers from ref. 
[ 131 are always significantly lower than those obtained 
by the present numerical method, thus it can be 
thought that the suspected additional heat sources in 
ref. [I9 accelerate the decaying of the solid layer 
(except in the case of A = 0, in which heat generation 
does not come into play). 

The flexibility of the present numerical method is 
noteworthy when one explores the effect of system 
geometry further. The case of a heat-generating sphere 
for which only a steady solution is presented in ref. 
[13] can be resolved in the present study by merely 

changing the geometry index n. The behavior of the 
freezing front in a sphere, shown in Fig. 6. indicates 
that a heat-generating sphere can be cooled more eas- 
ily than a heat-generating slab, as was predicted in 
ref. [l3]. 

5. EXTENSION TO MULTI-DIMENSIONAL 

PROBLEMS 

The numerical method formulated and tested for 
1-D phase-change problems can be extended to solve 
multi-dimensional problems but 2-D cases (without 
density changes between phases) are considered in this 
section. In general, the (_x, v) rectangular coordinate 
and the (x, 0) cylindrical coordinate shown in Fig. 
7 are transformed to new coordinates (r,~,. <) where 
vi = (x-fi_ ,) ‘6, and 5 = y (or 0). With the details 
omitted, the transformed conservation equations are 

0 1 2 3 4 

Dimensionless Time, 7 

FIG. 6. Dimensionless positions of the freezing front with time for the case of 4 = I, Ste = I, and k, k, = I. 
This work, ----- (planar), -----, spherical; Cheung er al. [13], -. 
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(a) the (x,y) coordinate system (b) the (x,0) coordinate system 

FIG. 7. Schematic of configuration for both rectangular and cylindrical coordinates-systems composed 
of N phases. 

(34) 

where I < i ,< N and n = 0 for a rectangular coor- 
dinate, 1 for a cylindrical coordinate, respectively. The 
interracial mass and energy balances are the same as 
equations (I 2) and (I 3). This can be justified by the 
fact that the heat flux in the q,-direction (i.e. normal 
to the phase boundary) contributed by the second 
term on the right-hand side is zero because the phase 
boundary is an isotherm (thus aTi/?< = 0 along the 
phase boundary). To obtain discretization equations 
from the above equations, a quite similar procedure. 
as discussed previously, is applied to the terms on the 
left-hand side. The treatment is implicit. while the 
quantities 2,‘s (thus [I,‘s, 6,‘s. V,‘s, and X,‘s) can be 
obtained explicitly in the same way as before. The last 
two terms on the right-hand side are treated explicitly 
and a linear temperature profile is used to evaluate 
the gradients [23]. Also a piecewise linear profile is 
used to evaluate pi. 

As a test problem, consider an infinitely long cyl- 
inder of square cross-section, initially filled with liquid 
at its freezing temperature i,. At zero time, the sur- 
face temperature is lowered to F? and maintained 
constant thereafter. Then the freezing front starts 
from the surface and moves inward until complete 
solidification is achieved. In this example. p2, c?, and 
k2 are taken as constants and the dimensionless par- 
ameter is the Stefan number, Ste = c?(?, - fZ)/lr,r. 
Solutions are obtained only for a representative octant 
of the square due to symmetry and a 20 x 20 grid is 
used in the cylindrical coordinate (i.e. II = 1). The 

symmetry lines are adiabatic and are characterized by 
fi2 = 0 and i-T,/?< = 0. Figure 8 shows the position 
of the freezing front on the .x-axis and its x-coordinate 
on the diagonal obtained by the present numerical 
method, where the s-axis is taken to be an adiabatic 
line opposite to the diagonal. The results obtained by 
Crank and Gupta [IO]. Crowley [8], Allen and Severn 
[25] and Lazaridis [26] are also shown for comparison. 
The results of this study are in closer agreement with 
those of Crowley [8]. The numerical solution of the 
dimensionless time (r = r2t,‘f’, I is the half-width of 
the square) for complete solidification gives 0.626 
while the corresponding solution from ref. [S] is 
5 0.625. 

Next. the melting (or freezing) of a finite cylinder 
of height H and radius / is considered, which was 
studied originally by Duda ef al. [IS]. Only a brief 
description of the problem is given here and a sketch 
is shown in Fig. 9 (the details are given in ref. [ 151). 
The cylinder contains both the solid and liquid phases 
the fusion temperature of which is f,, with the upper 
phase being solid and the lower phase liquid. Initially 
this system is at a steady-state condition with the 
upper surface of the cylinder maintained at a tem- 
perature T, (< f,) and the lower surface at f2 (> ?,) ; 
the side surface is thermally insulated and the phase 
boundary is at z = 2:. At f = 0 the insulation is 
removed and the side surface is exposed to a sur- 
rounding at T, (> T,) with the constant convective 
heat transfer coefficient /I,. Then the phase boundary. 
2, (t, r). starts to move upward and reaches eventually 
a steady-state position. For this problem, the (r. I) 
coordinate is transformed into a new coordinate (5. 
q,) where t = r, r], = (z-t_ ,)/S, and the index i = I 
refers to the upper phase, i = 2 to the lower phase. 
respectively. The transformed governing equations 
for r,(t. C. rl,) are 
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- Thii work 
- - - Crowley 

l Akn 8 Sevem 

0 0.2 0.4 0.6 0.6 1.0 

X 

7- 

FIG. 8. The position of the freezing front on the I-axis (upper curve) and its s coordinate on the diagonal 

(lower curve). 

II,=?& z,=f/di+i,-, 

with the initial conditions 

T,-f,_, 
i;- = vi3 

Hk,(f, - PO) 
i:=z,(0,5)=k,(f,_ib)+~*(i,_i,) (36) 

and the additional boundary conditions 

r=a 

FIG. 9. Schematic diagram describing the phase-change prob- 
lem in a cylindrical coordinate. 

$ (t, 0, a,) = 0, $0) = 0 

- ? 

-Sfi;ki&$ +<P,k,z = <S,h,(T,-T,) at f = 1 
c , 

at < = I and ‘1: = 0 (37) 

where i = 1 , 2. A sample solution is obtained for the 
following case (the same as case A in ref. [ 151 and this 
special case is chosen because an analytical solution 
for the steady-state position of the phase boundary is 
possible) 

kz 2, h,l H 
-= k, 1, ;= 1, F=3, T= 1 

c,(iz-Fo) 1 f,--fo TX-f, 
=--- 

h 
- = 0.5, - = 0.75. 

sf 1.5’ T,-To Tz-T, 

(38) 

Thirty grid points were used in the radial direction 
and 15 in each phase in the axial direction. Table 5 
shows a comparison of the steady-state phase bound- 
ary position calculated by the present numerical 
method with that obtained both anal>-tically and 
numerically in ref. [ 151. The present numerical method 
gives exceptionally accurate results as e\<denced in 
Table 5. 
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Table 5. Comparison of numerical solutions for steady-state location of freezing 
front with analytic solution [I51 

r 0.0 0.1 0.4 0.6 0.8 I.0 

Analytic [I_‘] 0.4687 0.465-I 0.4546 0.4317 0.3845 0.1737 
This work 0.4686 0.4654 0.4545 0.4316 0.3845 0.2737 

Numerical [ 151 0.4710 0.4616 0.4564 0.4328 0.3845 0.271 I 

In Fig. 10, the dependence of the transient position 
of the phase boundary on the dimensionless time r 
( = r, r/l’) is shown. The results of this study compare 
favorably with those of Duda et cd. [15]. since the 
largest difference that occurs at the steady-state limit 
(the numerical values of the position of the phase 
boundary corresponding to this time are tabulated in 
Table 5) is within I %. 

6. SUMMARY 

A finite-difference method based on a coordinate 
transformation is developed for phase-change prob- 
lems with multiple moving boundaries of irregular 
shape. The coordinate transformation employed here 
preserves and utilizes the conservative forms so the 
conservation principle is obeyed exactly in each phase. 

0.25 

0.30 

0.35 

$1 
? 

0.40 

0.45 

0.5c 

The resulting discretization equations are associated 
with the moving control volume which undergoes 
stretching/contraction (also distortion in two-dimen- 
sional problems) in the physical coordinates. Ths 
moving boundaries are treated explicitly to avoid iter- 
ations, while the temperature field equations are 
treated implicitly. The inconsistent heat fluxes, occur- 
ring at the interfaces due to the explicit treatment of 
the interfacial energy balances, are used to update the 
positions of boundaries, while the mass fluxes are 
always conserved throughout all phases. 

The accuracy, which is an important criterion for 
numerical methods. is investigated by solving some 
specific problems with large density change. heat pen- 
eration. and multiple moving boundaries. The present 
numerical method gives rise to good or better results. 
when compared with available semi-analytical and 

I I I I I , I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIG. IO. Comparison of numerical solution for transient position of the phase boundary. This work. ---: 
Duda et al. [l5]. -----. 
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numerical solutions. The present numerical method 
proves to be fairly general and flexible and can be 
used for a wide range of phase-change problems where 
phase change occurs at a distinct temperature. For 
the problems where the latent heat is released over a 
range of temperatures, the present numerical method 
is not applicable. Although the solution method is 
tested against phase-change problems, it is equally 
applicable to moving boundary problems without 
phase changes. 
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UNE METHODE NUMERIQUE POUR LES PROBLEMES DE CHANGEMENT DE PHASE 

Rbumt&Gn developpe une methode precise aux differences finies pour les probltmes de changement de 
phase avec plusieurs frontieres mobiles de forme irreguliere, en employant une transformation de coor- 
donnees qui immobilise les front&s mobiles et preserve les formes conservatives des equations originales. 
La methode est tout d’abord p&e&e sur des probltmes monodimensionnels (avec grande variation de 
densite entre les phases, generation de chaleur, et plusieurs front&es mobiles) puis elle est &endue aux 
problemes bidimensionnels (sans changement de densite entre phase). Des solutions numeriques sont 
obtenues de faGon non itiratives en utilisant un traitement explicite des bilans de masse et d’energie et un 
traitement implicite des equations de champ de temperature. La precision et la flexibilite de la merhode 
numerique present&e sont virifiees en resolvant quelques problemes de changement de phase et en com- 
parant les resultats avec les solutions analytiques. semi-analytiques et numiriques existantes. Les r&hats 
montrent que des problemes mono ou bidimensionnels de changement de phase peuvent Ptre trait& 

aisement avec une excellente precision. 
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EIN NUMERISCHES VERFAHREN FtiR PHASENiiNDERUNGSPROBLEME 

Zusammenfassung-Fiir Phasenanderungsprobleme mit mehreren beweglichen, unregelmIl3ig geformten 
Grenzen wird ein sehr genaues und effizientes Finite-Differenzen-Verfahren entwickelt. Eine Koordinaten- 
Transformation hilt die beweglichen Grenzen fest und bewahrt die Form der urspriinglich giiltigen 
Gleichungen. Das numerische Verfahren wird zunichst fur eindimensionale Phasenanderungsprobleme 
dargestellt (einschlielllich groBer Dichteunterschiede zwischen den Phasen, Warmeerzeugung und mehreren 
beweglichen Grenzen). Anschliellend wird es auf zweidimensionale Probleme erweitert (ohne Dichte- 
anderung zwischen den Phasen). Die numerischen Losungen ergeben sich aus einer expliziten Behandlung 
der Staff- und Energiebilanz an der Grenzflache und einer impliziten Behandlung der Feldgleichungen filr 
die Temperatur. Die Genauigkeit und Anpassungsfihigkeit der vorliegenden numerischen Verfahren 
werden durch die Liisung einiger Phasenanderungsprobleme und durch den Vergleich mit vorhandenen 
analytischen, halb-analytischen und numerischen Losungen veriliziert. Die Ergebnisse zeigen, daB ein- und 

zweidimensionale Phasenfinderungsprobleme mit sehr guter Genauigkeit berechnet werden konnen. 

‘IIICJIEHHbIft METO& PEIIIEHMR 3A&A4 0A3OBOI’O IIEPEXO&4 

Amo~a1sm+Pa3pa6o~a~ WCTaTO'lHO TO'lHblii H 3@$CXTHBHbdi KOHeqHO-pa3HOCTld MCTOl( PeIUeHHX 

-11 f&i3OSOrO nepCXOL@ C MHOrO¶iCJleHblMH JlBHXQ'lWMHCX rpaHHUaMH HenpaBHJIbHOti l#iOpMbI Ha 

OCHOBC XOOpDiH~THOrO npco6pa3OBiIHH1l, ~HlCCHpj'KWerO LlBHX+'lUHeCX I'&NlHHUbl H COX~runOUlerO 

~0~ctpa~H~~yro 4op~y ~cxo~wbu onpcnenmouwx ypa~~e~~l. %meHHbdi bfe~on cnaqaRa npencras- 
JIeHmX orutoMepHw~~@3oBoronepexo&tii (y9HTarBalo~cyurccraclaroernMeHeHwanOTHocreg 

M~~aMH,Te~OBW~eHHe A HWlliHCTBeHHOCTb WilXj’lUekX I-J,aHHUbl),a 3aTeMpaCUIH~HiUX 

peUlCHE!X JJByhlCpHblX Wa=l (6e3 HOMeHeHHX RROTHOCTefi MeWly $83aMH). gHCJleHHb8e pe3ynbTam 

nOJlyWHbl HeHTejWWBHblM MeTOllOM npeo6pa3oaa~~n MCX+UHblX 6aJIaHcoB MaCCbi H 3HqrHH Ha 

OCHOBe XBHOti CXCMbl H 1lpeO6pa30~aH~n YpaBHeHHti JUIX TeMIQaTypHHX nOJlefi C HCllOJIb3088HHeM 

HeneHoii CxeMu. TovHocra II rH6KOCTb npennoxeetioro 4HCneHHOro bwrona npOBepnncn peUeHHeM 

HeKOTOpblX 3aLIaS C @3OBYbfH IlepeXOJlaMH H CpaBHeHMeM nOJlj=feHHblX pe3j'JIbTaTOB C HMCIOIUHMHCS 

aHaJlHTUWCXHMH, nOJIJ'aHUIHTH'IeCKEb4H H PHCJleHHbIMH ~UIeHHXbOl. i+Q'JlbTaTbl CBHneTeJIbCTByloT 0 

TOM,'fTO OlXHO- HllBj'MepHble 3~a'lH(pZ3OBOrO IlePeXOila MO~pWIaTbCXJIel-XO Ii C BblCOKO~TO'IHOC- 

TblO. 


