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A numerical method for phase-change problems
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Abstract—A highly accurate and efficient finite-difference method for phase-change problems with multiple
moving boundaries of irregular shape is developed by employing a coordinate transformation that immo-
bilizes moving boundaries and preserves the conservative forms of the original governing equations. The
numerical method is first presented for one-dimensional phase-change problems (involving large density
variation between phases, heat generation. and multiple moving boundaries) and then extended to solve
two-dimensional problems (without change of densities between phases). Numerical solutions are obtained
non-iteratively using an explicit treatment of the interfacial mass and energy balances and an implicit
treatment of the temperature field equations. The accuracy and flexibility of the present numerical method
are verified by solving some phase-change problems and comparing the results with existing analytical.
semi-analytical and numerical solutions. Results indicate that one- and two-dimensional phase-change
probiems can be handled easily with excellent accuracies.

1. INTRODUCTION

THE sOoLUTION of moving boundary problems with
phase changes has been of special interest due to the
inherent difficulties associated with the nonlinearity
of the interface conditions and the unknown locations
of the moving boundaries. Exact closed-form solu-
tions of phase-change problems are available only for
a limited number of cases [1]. A variety of approxi-
mate analytic solution techniques have been
developed, including the heat balance integral (2],
variational [3], embedding [4], and perturbation tech-
niques (5, 6]. In addition, efforts to sofve phase-change
probiems numericaily have produced such diverse
solution methods as the enthalpy {7, 8], apparent heat
capacity [9], isotherm migration [10], and coordinate
transformation methods [11-16} ; these methods have
been introduced by researchers mainly to overcome
the difficulties in handling moving boundaries.

Of the numerical methods, coordinate trans-
formation techniques have been widely used because
of the advantage of working with fixed domains (the
moving boundaries are immobilized in the trans-
formed coordinates) and a good review in this
approach is provided in the work of Crank [17]. How-
ever, the simplification obtained by employing coor-
dinate transformations introduces greater com-
plexities into the transformed governing equations.
Such complexities seem to become substantial with an
increase in the number of moving boundaries
especially for multi-dimensional problems, since the

t For the purpose of generality, nondimensionalization
which is useful in treating a particular problem is not con-
sidered in the formulation and in the presentation of the
solution method.

transformed equations were derived separately for
each phase.

In this paper, troublesome complexities in the trans-
formed equations are effectively eliminated through
the careful use of a coordinate transformation (the
well-known Landau transformation). The present
transformed equations also preserve the conservative
forms, which enable the mass and heat fluxes across
the control volume faces to be consistent: thus the
conservation principle is satisfied exactly in each
phase. Furthermore, multiple moving boundaries can
be treated easily since the transformation is performed
only for a representative phase.

The transformed conservation equations are solved
numerically with an implicit finite-difference method
described in ref. [18]. Iterations characterizing a fully-
implicit method are avoided by the adoption of an
efficient algorithm suggested by Sparrow and Chuck
[11] which is extended here to account for density
variation between phases for the case of one-dimen-
sional (1-D) geometry. By noting that additional con-
vective terms are created as a result of coordinate
transformations [12], the performance of various
numerical schemes—central difference, upwind,
hybrid, and power law schemes (the details of these
schemes are explained in ref. {18])—on the accuracy
and efficiency are investigated in this study.

The performance characteristics of the present
numerical solution method, which can be applied to
a broad class of phase-change problems due to its
remarkable flexibility, are demonstrated by solving
specific problems that involve volumetric effects, heat
generation, and multiple moving boundaries.

2. FORMULATION IN 1-D GEOMETRY

The present numerical formulationt is presented in
this section for 1-D geometry. Extension to multi-
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a coefficient in finite-difference equation
A dimensionless heat generation
b source term
Bi Biot number
¢ specific heat
C constant
D diffusion conductance
f: variable. equation (1)
F mass flow rate, equation (10)
i

mass flow rate across the interface X,
h; specific enthalpy

latent heat of gas/liquid phase change
hy latent heat of liquid/solid phase change
h, convective heat transfer coefficient

h* reference enthalpy

H height of a cylinder

J, energy flow rate, equation (10)

k, thermal conductivity

I reference length

L, absolute value of L, denotes a latent heat

M;  number of control volume faces within
each phase

n geometry index

N total number of phases

D exponent, equation (15)

P Peclet number

S, heat generation per unit volume
Ste  Stefan number

s time

T, temperature distribution

T, temperature at the boundary X,
T,  temperature at infinity

At time increment

u; velocity

f variable, equation (11)

NOMENCLATURE

7 X7 in+1)

X, ¥, 2 spatial coordinates
X,, Z, variables
» Z; positions of boundaries.

Greek symbols

2, thermal diffusivity

B variable

d; phase thickness

n, transformed coordinate

1.,  positions of control volume faces in each
phase, equation (15)

0 angular coordinate

/ similarity constant

¢ transformed coordinate

0 density ratio

Pi density

T dimensionless time

7, dimensionless freezing time

Ties T2ea T3 dimensionless freezing times
from ref. [22]

¢ superheating parameter.

Superscripts
0 quantities at time ¢,

12 quantities at time 7, + 1A¢
quantities at boundaries.

Subscripts
e, w east and west control volume faces
E, W east and west grid points
i phase index
J node index in each phase
m, m+1 phase index
P grid points of interest.

dimensional geometry is straightforward and will be
presented later. It is assumed here that all phases
are separated by sharp boundaries (or interfaces).
Thermophysical properties are allowed to vary within
each phase as well as between different phases. In
particular, densities are assumed to be constant within
each phase, but they may differ between phases.
Therefore, 1-D convective motions due to the volu-
metric effects can be considered.

One of the most general situations in 1-D phase-
change problems is illustrated in Fig. 1. Although the
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FiG. 1. Schematic of configuration considered—a system
composed of N distinguishable phases.
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configuration is shown for a planar geometry, the
argument that follows is equally applicable to a cyl-
indrical or spherical geometry.

Suppose that N phases are placed along the coor-
dinate, as shown in Fig. 1. Each boundary is either
fixed or moving and can be an interface undergoing
phase change or a boundary such as the edge of a
thermal boundary layer and a fixed solid wall, etc.

The heat transfer process in each phase is governed
by the unsteady, 1-D heat equation along with the
mass continuity equation
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where n =0, 1, and 2 for a planar. cylindrical, and
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spherical geometry, respectively, and an index i that
ranges from | to N is assigned to each phase so mul-
tiple phases can be handled with ease. The specific
enthalpy 4, is assumed to depend only on temperature.
and S, is the heat generation per unit volume within
phase i. The quantity f(¢) associated with the velocity
field 4, is included to account for any 1-D motions
caused by volume changes between phases.

Now consider one of the interfaces at which a phase
transition is occurring (at its phase temperature T,),
and the phases adjacent to that interface. Let X, be
the position of the interface. The interface conditions
that serve as boundary conditions of the adjacent
phases are expressed as [19]

Tm = Tm+l = 7“‘m (3)

dx, dX,,
Pm | Um— —E;_ = Pt \ Up1 — ~(;t* (4)

dX, oT,
My g 2Im
Pom <u,,. T )h,,. " Ay

d/\7nl
= Pmrt \ Uner ™ _dT

where all quantities are evaluated at the interface X,,.
Equation (3) indicates the interface temperature is the
temperature of phase equilibrium (for the prevailing
pressure). Both the sides of equation (4) represent the
mass flow rates per unit area across the interface and
are equal to each other according to the conservation
of mass. Equation (5) states the balance of thermal
energy delivered to the interface. One of the con-
duction terms in equation (5) may be replaced by the
convective heat fluxes or by the radiative heat fluxes,
etc., depending on the problem of interest (treatment
of such cases is straightforward and requires only a
slight modification in the argument that foflows ; thus,
it is excluded for brevity).

The introduction of dimensionless coordinates #,’s
that immobilize the moving boundaries eliminates the
difficulty in handling the unknown positions of the
moving boundaries

CTm+I

>/Im+ ! —km+ 17 %

&)

x—‘x}i—l .
=7 i=1,23..,N (6)
Since X,_, < x< X, in phase i and §,= X,—X,_,,
each phase is then characterized by

phasei: 0y <1, i=1,23,....N (V)

for all time. A rigorous argument about the validity
of the equalities in equation (7) is insignificant in the
solution method and thus omitted.

Without sacrificing mathematical simplicity, the
transformation of the governing equations (1) and (2)

gives [20]
< ( evi\ | OF, 0 o
ét p‘én. T @
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cn on; on;

cv;
Fn D) =p; (ﬁ— }7)
Tk; €T,
Jini ) = Fh,— 5 C. (10)

!
Viln 1) = {X,(n,n}"",

Xi(n 1) ='7i5:(’)+Xi-|(t) (1

where | € i < N. Note that the value of X is the same
as that of the coordinate x so that X,_, < X, < X,
Note also that the transformed equations degenerate
to the original governing equations unless the pos-
itions of the boundaries change with time and that
the conservative forms are preserved in the present
transformation (the advantage of the conservative
forms is that the conservation principle is obeyed
exactly in each phase when a finite control-volume
integration method is used to derive discretization
equations [18}). After integration over time and over
the control volume in n, coordinates. the first terms in
equations (8) and (9) denote the net change of the
mass and the energy, respectively, contained in that
control volume. The total mass flux F; combines the
pseudo-convection terms created by the immo-
bilization of the moving interfaces [12] and the con-
vective terms due to physical motions of adjacent
phases (which, if present, are caused by density vari-
ation between phases). The total heat flux J; represents
both the diffusional heat flow rates and the net con-
vective enthalpy flow rates.

The interface boundary conditions, equations (4)
and (5), are then expressed as

F,=F,. =F,
Jm = Jm+l

(12)
(13

where all values are evaluated at X,, (i.e. at i, = 1
and 7,,,, =0), and the mass flow rate across the
interface X,, is defined as £, for future use. Note that
the interfacial mass and energy balances are no more
than the conditions of continuity of the flux terms in
the transformed governing equations.

3. SOLUTION PROCEDURE

Before the solution method is presented. the role
played by the interfacial mass balance in acquiring the
velocity fields is stated briefly. The interfacial mass
balance (12) can be rephrased as

av,
o =

m Fm
Do -./;n+l pm+|,

where

Vm Xn+ l.

n+l (4

In general, there is at least one phase the value f; of
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FiG. 2. Numerical grids and control volume faces for one-
dimensional problems.

which is known for all time (usually such a phase is
stagnant, i.e. f; =0); let it be phase m without a
loss of generality. All other values of f; can then
be determined successively from the above equation
starting with f;, if all £, obtained from the interfacial
energy balances are prescribed.

The transformed conservation equations (8) and
(9) are similar to those of the diffusion/convection
problems (without phase change) discussed in the
work of Patankar [18] and can be solved by an implicit
method based on the finite control-volume integration
procedure described in ref. [18]. The positions of the
control volume faces are deployed in each phase
according to the relation

7LV jovasm as
’71’.]‘" M,—l , _/_’ Yoy ey i ( )
where M, is the total number of control volume faces
in phase /, and p; is an exponent suited to the problem.
The grid points are placed midway between the con-
trol volume faces so that a total of (M, — 1) grid points
are distributed inside each phase. Since the trans-
formed conservation equations (8) and (9) have the
same forms for different phases except the phase index i,
discretization equations are derived only for phase i
yet applicable to other phases. For a typical control
volume, shown in Fig. 2, the integration of equation
(9) with the aid of equation (8) gives (for convenience,
constant properties are assumed and the subscript § is
dropped except in §, and X",-_ D

apTp = acTe+awTw+b (16)
where
pc(AV)e

SP(AV)P5 al") = At

ap = ag +aw +ap -

ag = D.A(|P.|)+ maxt { —~cF,.,0}
aw = D,A(|P,|)+max {cF,,0}
Xk Xk cF, cF,
D, =~——~——, D, P, = P, =—
ol(A")c

= 5.(An. D’ D,
b=Sc(AV)p+alTS, (AV)e=V.—V.

i 1
V,=——X1', ¥V, =
n+1 n+1

Xw = rIw5I+Xi—l

e+ 1
XW

X. = qeoi+Xi— 1

+max {4, B} denotes the greater of 4 and B.
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Table 1. Function A(|P)) for different schemes [18}

Scheme Formula for A(|P|)
Central difference [-0.5|P|
Upwind 1
Hybrid max {0, [ —0.5]P|}
Power law max {0, (1 ~0.1]2})*}

Here, the known values at time ¢, (i.e. the values at
the beginning of the time step) are denoted by using
the superscript 0. In accordance with the implicit
difference, all other values (i.e. without a superscript)
are to be determined; S and S, arise from the lin-
earization of the source terms [18] ; and D and P (with
the subscripts dropped) indicate the diffusion con-
ductances and Peclet numbers, respectively. The func-
tion A(|P|) can be selected from Table 1 (the same as
Table 5.2 in ref. [18]) for the desired scheme. Non-
constant values of thermal conductivity and specific
heat can be handled in the same way as in ref. [18].

It is interesting to note that, although the trans-
formed equations are integrated over the transformed
coordinates, all the quantities in the resulting dis-
cretization equations have exactly their own physical
interpretation. For example, (AV)? corresponds to
the actual volume enclosed by two adjacent control
volume faces at time f,. The fact that (AF), changes
with time represents in effect the stretching/
contraction of the moving control volume in the
physical coordinates which corresponds to the fixed
control volume in the transformed coordinates.

The interfacial energy balance at X,,. or equation
(13), is discretized as

Euho(T) +(D,,A(1P,.1) + max {c,£,,.0}]

X (Top =T = Fubos (1) +[Dy0s AP ])
+max { —Cpy 1 s 01T =Ty 18)
where
Db = Xnkn .
" 0u(An,T T O 1 (A
P,,,=C'Bi'", P”,+,=3’"15f"i§ﬂ. (17)

The indices m and (m+ 1) represent the phases adjac-
ent to the interface: 4, (T,) and A, (T.,) are the
specific enthalpies of phase m and phase (m+1) at
the phase temperature T,,,, T,.s and T, 5 are the
temperatures of the neighboring grid points to the
interface X,,, as shown in Fig. 3; and (4An), and
(A, are the distances between the interface X,
and the adjacent grid points. Equation (17) provides
an implicit expression for £ - in the case of a central
difference scheme
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FiG. 3. Grid-point cluster near the interface X, at phase
temperature 7,,.

1‘;'. - Dm(Tm.B_fm)+Dm+l(Tm+l.B_Tm)
" Lm—O-Scm(Tm.B_Tm)+0-scm+l(rm+l.B—Tm)
(18)

where L,=h,, l(f',,,)-—h,,,(f,,,), and the absolute
value of L,, represents the latent heat. £, can also be
obtained algebraically for other numerical schemes
while trial and error is necessary for a power law
scheme.

Let us suppose that all additional boundary con-
ditions are specified for a particular problem, in
addition to the phase interface conditions discussed
previously. In solving the set of finite-difference equa-
tions (16) by a tridiagonal matrix algorithm, the
unknown quantities X;'s and F’s are required as input
(values of X;’s, ¥;’s and J,’s can be derived from Xs).
While X;’s are evaluated at time (¢, +Af) in accord-
ance with the implicit difference, F;’s are evaluated at
time (¢, + jA?) (by interpreting an implicit difference
as a central difference representation with respect to
time (¢, + }A¢) [11]) and discretized as

(3 o V=W
—pl{fl <6t> }=pl<fl - At )

(19)

where the superscript 1/2 indicates the quantities at
time (fo+ !A7). Therefore, all f!*s and X/'s are
required to determine the unknown temperature dis-
tributions 7;’s at time (¢, +A¢). The needed values
can be obtained via the interfacial mass and energy
balances as follows.

First, £ is determined by evaluating the interfacial
energy balance (17) at time t,. (dV,,/d)° and f3,,
are calculated from the interfacial mass balance (14)
with the known values of f3, F2. Next, V,, at time
(to + 1A1) is obtained as

pre_ [70+(d—l7—"1)0_A_£
m m 2

a (20)

and X ? then follows. It should be noted here that
there can be boundaries for which the above pro-
cedure is unnecessary since X;(f)’s may already be
assigned, depending on the problem. For example,
X, indicates the origin of the system and remains
unchanged with time (i.e. X,(z) =0), as shown in
Fig. 1. Thus, all values of X!/%'s can be determined by
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following the above procedure or by prescribing them.
All 6/ *'s then follow lmmedlately Similarly, £)* is
determined by updating X;’s and s in equation (17)
with the quantities at time (fo+: Ar, except the tem-
perature fields. In addition, (dV,,/d)"? and f,,,,,| are
obtained from equation (14). Finally, v, and X,, at
time (¢, + Ar) are determined as

dav,,

o= (4

1.2
v = ,7 Lt 1)
dt) Ar, X, ={n+DV,}

@n

It then becomes possible to solve the unknown tem-
perature fields 7;'s at time (¢, + Az) with known values
of Xs and f! s, provided the additional boundary
conditions corresponding to a specific problem are
completely elucidated.

The advantage of this approach is that it enables
the solution to march steadily forward in time without
requiring iterations at each time step while the pos-
itions of the interfaces are being updated {12]. The
explicit treatment of the interfacial conditions can still
assure the conservation of mass fluxes over all phases.
Although the heat fluxes are also conserved within
each phase by utilizing the present coordinate trans-
formation, the heat fluxes at the interfaces may be
inconsistent due to the explicit treatment of the mov-
ing boundaries. Those inconsistencies are adjusted by
updating the positions of the interfaces; thus, the
generation of parasitical heat sources is forced to van-
ish at each time step, which assures the overall energy
conservation within a tolerance.

4. EXAMPLE PROBLEMS

The accuracy and flexibility of the present numeri-
cal method are examined in this section for the case of
1-D geometry. Particular 1-D phase-change problems
are solved and compared with existing analytical,
semi-analytical and numerical solutions.

4.1. Neumann problem with volume changes

Consider the solidification of a liquid in a semi-
infinite plane for which phases 1 and 2 are the solid
and the liquid phases, respectively; X, is the solid/
liquid interface with L, = h,; and X, is the front
of a thermal boundary layer that diffuses into the

liquid phase starting at the interface X,. The
additional boundary conditions are
Ti0,)) = To, Ta(1,1) = To(ny,0) = T,
5,(0)=0 (T,< T, < T,). (22)

To illustrate the volumetric effects, consider the case
of p,; = p,. The dimensionless parameters are

7‘;2—7“-1 Cl(fl—fo)
= R S} = —————
Pl $ ¢ T,~-T, ¢ L

23

%2 k, P2
£ kl’ P
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where p is a density ratio; ¢ a superheating par-
ameter; and Ste the Stefan number, which is a mea-
sure of sensible heat to latent heat. Assume that
ky=k, and x, = z, to reduce the number of par-
ameters. The exact solution shows that
X /= 2/3/(x,t/I*) where [ is an arbitrary reference
length, and 4 is a similarity constant obtained by the
following equation [1):

ijn et et
Ste erf;  erfc (“ip)”

(24

For a more sensitive test of the quality of the numeri-
cal method, the positions of the phase interface with
time are chosen as the compared quantities. There-
fore, the value of 4 obtained numerically will be com-
pared with that from the above equation for the same
values of p, ¢, and Ste.

A value of X, is selected to be large enough so that
grid points near X, remain thermally dormant and do
not affect the solution. One simple way to achieve this
objective is to assume that X, = CX,, where C is a
constant factor [12]. Numerical parameters defined
in equation (15) are set to be M, = 51, M, = 301,
pi = 1.0,p, = 1.1,and C = 500. The assumption that
a solid layer of thickness d,// = 10~ % exists at time
t = 0 avoids start-up difficulties due to the singularity
in the initial condition. A linear temperature profile is
prescribed in the solid phase (considering the thinness
of the solid layer), while the temperatures of the liquid
phase are initialized with T,. The time steps are selec-
ted so that the maximum change in J; is less than 2%
at each time step. The effect of this initially prescribed
solid layer upon the subsequent results vanishes in
small elapsed times. and the numerical solutions
nearly follow the exact ones before J,// reaches, at
most, a value of 10~° for a wide range of parameters.
Therefore, there is no need to start the calculation with
the analytic solution as far as a small time solution is
not the main concern. Thus, calculations continue
until §,/f = 100.

Table 2 shows the maximum percentage errors
between the results for a similarity constant 4 from

C.-J. KiMm and M. Kaviany

the exact solution (equation (24)) and the present
numerical method during the interval
107+ < &,/ < 10*. Excellent agreement with the exact
solutions over a wide range of parameters is evident
in Table 2. The results also show the effect of various
schemes on the accuracy. Although Ste < 5 represents
the range of interest in most real situations, high Ste-
fan numbers are included to show the performance of
various numerical schemes more clearly. The upwind
scheme gives the least accurate results, while negligible
differences are observed in the results obtained by
employing other schemes. The efficiency of the power
law scheme deteriorates due to the additional work
needed to find roots by trial and error (see equation
(17)). In general, both central difference and hybrid
schemes yield good results in addition to providing
simple solutions to the interfacial energy balance (in
most phase-change problems, the interface moves
relatively slow, therefore allowing the use of the cen-
tral difference scheme [16]). For this reason, the cen-
tral difference scheme is employed to solve the sub-
sequent examples.

4.2. Bubble growth problem

The growth of a spherical bubble in a superheated
liquid is considered next so the effects of system
geometry (or n = 2) can be examined. In this system.
phases 1 and 2 are the gas and the liquid phases,
respectively; X, is the gasliquid interface with
Ly = —hy;and X, is the front of a thermal boundary
layer. In addition

T\(n,,0)= fn T:(ﬂ:~0)=f:- /?I(O)z()-
T(1,n=T7,> T, (25)
with the dimensionless parameters
P2 P CZ(TZ_TI)
=—, Ste=——"-"7—. (26)
P [ [ -L,

The analytic solution by Scriven [21] shows that
X/l = 24/(a,t/1?) where the relation between Stre
and 4 is given as

Table 2. Percentage error in values of 4's for various schemes (compared with the
exact values of 4’s in equation (24))

Ste p ¢ A Central Upwind Hybrid Power law
0.01 1 0 0.07059 -0.01 000 —0.01 —0.01
5 0.05719 —-0.09 -0.38 —0.09 —0.10
0.5 1 0.06742 -0.03 -0.10 -0.03 —0.03
5 0.05646 —-0.10 —-041I -0.10 —0.11
1 1 0 0.62006 —0.10 0.11 -0.10 —0.10
5 0.14351 -0.13 =268 -0.13 -0.26
0.5 1 0.33505 049 230 0.49 0.08
5 0.12936 -0.19 =247 -0.19 —0.31
100 1 0 1.85095 —0.37 .73 -0.37 —0.33
5 0.14874 -149 538 —1.97 —4.42
0.5 l 0.39310 1.00 —3.20 1.00 0.28
5 0.13287 —1.08 —-5.15 —1.11 —1.96

Error(%) = ((Aecact — Anumericat)/Aexact) X 100.
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x 32
A s
Ste=24{ —exp{i —x
i X7

(R (I
p/\AL X

The calculation starts with X,// = 10~ ® and a uniform
temperature field in the liquid phase at time ¢ = 0. The
edge of the thermal boundary layer X, is carefully
chosen so that it does not affect the heat transfer
process at the interface X, and it is allowed to increase
with X,. The computations are performed with
M, = 101, p, = 2.5. Table 3 shows the maximum per-
centage errors for £’s produced by the present numeri-
cal method during the interval 10-* < X/l < 10? and
by the analytic solutions of equation (27). Good
agreement exists between the solutions even fora large
density ratio. Note that the effect of a density change
becomes insignificant as Ste — 0 for the Stefan num-
bers defined as above.

4.3. Inward solidification problem

The inward solidification of a saturated liquid in a
sphere of radius / has been treated by many inves-
tigators [5, 22, 23] for either constant temperature or
convection at the wall. The case with convection at
the wall will be considered here, for which

Tin,0) =T, 6,(0) =0,
Jo(1, 1) = Xh {T.(1,0)—T,} (28)

where phases 1 and 2 are the liquid and the solid
phases, respectively; X, is the phase interface with
L, = —hy; and X, is the fixed wall (i.e. X,(r) =1).
The dimensionless parameters are

CZ(TI-T::) . hn[
--———~_LI , Bi= %

A linear temperature profile with a negligible tem-
perature drop is prescribed within the solid layer of
thickness d,// = 10~¢ at time ¢ =0, which avoids
start-up difficulties. An overall energy balance is taken
from the instant freezing begins (i.e. 7 = 0) to each
time step

Ste

29

1 4
J X"p(h—h*) dx+.[ J1(1,1) dt = constant (30)

0 0

Table 3. Maximum percentage errors for
values of 4 compared with 4’s in equation (27)

P i Ste Error(%)
1 0.0! 1.965 % 10~* -0.40
0.1 1.682 x 10?2 -0.12
1 0.4843 -0.63
1000 0.01 1.965% 10~* —0.40
0.1 1.697 x 10-? —0.11
1 0.6975 -0.26

Error(%) = ((Aexser — Anumericat) Aexact) % 100.
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which is useful in assessing the validity of the numeri-
cal solutions in terms of the physical reality. The above
overall energy balance is checked at every time step
to determine if it is satisfied within a tolerance (say,
0.1% for the present example with the reference
enthalpy #* being that of the solid phase at its fusion
temperature).

Figure 4 shows the timewise variation of X’,(t) for
Ste = 0.5 and three Biot numbers. The values of X,
with time are sufficiently close to those of refs. [22,
23], while some discrepancies are noted as the freezing
front approaches the center. The time for complete
solidification of the sphere, ¢.. is assumed to be equal
to a time at which X,// reaches a value of 10~%. Table 4
compares the results for the dimensionless freezing
time 1, (=x.t/[7) from the approximate analytic
method [22] with those obtained by the present
numerical method. The terms 7,.. 15, and 7, mean
the solidification time 1. by evaluating the first one,
two, and three terms of the approximate analytic solu-
tions [22], respectively. The disagreement with the
values from ref. {22] becomes significant with increas-
ing Stefan numbers, while good agreement is noted
for Ste < 0.1. This failure probably arises because the
convergence of the estimates 1., .., and 15, from ref.
[22] becomes weaker with increasing Ste. since only
the first three terms of the approximate analvtic solu-
tions are considered.

[t is then natural to expect the degree of agreement
to improve if more than the first three terms of the
approximate analytic solutions can be included. An
attempt to include more terms was made for the
planar case (n = 0) by Pedroso and Domoto {6], who
developed the exact solutions for the case of Ste < 1
by including as many terms as desired in their per-
turbation technique (actually, the first nine terms were
considered). For this planar case (n = 0), the solutions
of the dimensionless freezing time for Bi =1, and
Ste = 0.5 and 1.0 give (Bi)*(Ste)t. = 1.636 and 1.796,
respectively, while the corresponding solutions from
ref. (6] are (Bi)*(Ste)t. = 1.656 and 1.804. respec-
tively. The difference between these two results is neg-
ligible, as expected.

4.4. Phase change with heat generation

Freezing and melting in a heat-generating. I-D slab
of thickness 2/ is chosen to test the effects of heat
generation. The 1-D slab is initially molten and
trapped between two semi-infinite walls at tem-
peratures below the freezing point of the slab, This
problem was originally studied numerically by
Cheung et al. [13] using the method of collocation.
Only one-half of the system is considered. since the
heat transfer process is assumed to be symmetrical
with respect to the centerline of the slab, which is
taken to be the origin of the system. Here. phases 1
and 2 are the liquid and the solid phases of a heat-
generating substance with a uniform heat source
S.2(=38)), respectively, and phase 3 is a cold wall with
§3;=0; X, is the liquid/solid interface with L, =
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FiG. 4. Timewise variation of the freezing front. This work. —; Hill and Kucera [22}, -------- ;
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Table 4. Dimensionless freezing time of a sphere with
Bi = 0.2 (compared with the results from ref. [22])

Ste Ty Ty Tse T,
2.0 1.55 1.42 .17 1.26
1.0 2.53 255 2.38 225
0.5 4.40 4.51 4.47 417
0.2 9.92 10.09 10.17 9.81
0.1 19.09 19.28 19.41 19.08
0.01 184.1 184.3 184.5 184.5

—hy: X, is the fixed boundary (or X() =)
separating two substances; and X, is the edge of a
thermal boundary layer in the cold wall. The addi-
tional boundary conditions are

T0(1,,0) = To, Ts(13,0) =T},
5,0 =0 (T,=2T,>T7y

5T
10,0 =0, Ty(l,0)=T,0,0.
(2/]]

Sy =J500,0, Ti(1,0 =T, (31

For brevity, the present calculations are carried out
when 0 < 6, < /, for which the above system of equa-
tions is valid (the details are described in ref. [13]).

The thermophysical properties of a heat-generating
substance are assumed to be the same in both phases
and the dimensionless parameters are then

I& 4 A= ___,,____Slll

ky' oy’ _kZ(TI_TJ)’
_ 7,-T, _ (T =Ty) ,
¢_T1—T3(?]), Ste"" "‘L| (3"')

+ It seems reasonable to neglect the differences contributed
by the region x// < —2, because the two profiles are nearly
identical in this region.

where the case of k;/k, = x;/2, is considered, which
simplifies the presentation of the numerical results.
The initial singularity is avoided following a similar
procedure to that discussed previously. and special
care is taken for values of X,, which are selected
continuously to be large enough se the results are not
affected. By the nature of the problem. the results
should satisfy the following relation :

J ‘ p(h—h*) dx— St = constant (33)
0

which represents the overall energy balance reflecting
the adiabatic conditions at the centerline of the slab
and at infinity, and the contribution of the uniform
heat generation. The above condition proves to be
valid within a tolerance of 0.1% throughout the
results presented below (with A* being that of 4,
evaluated at T).

Figure 5 shows the dimensionless temperatures vs
the physical distance normalized by the half-width of
the slab for the case of 4 =1, ¢ =1, Ste =2, and
k,/k, = 1 where the dimensionless time t (=2x,t/{7) is
used. The dimensionless thickness of the solid layer,
3,/1, attains a value of 0.224 at t = 0.05 and achieves
a maximum of 0.356 at 7 =0.29, while the cor-
responding solutions from ref. [13] give 0.23 at
7 = 0.05, and a maximum of 0.34 at v = 0.3, respec-
tively. The temperature distributions agree well at the
initial stage of freezing but deviate significantly as ¢
increases. The discrepancies can be explained with the
aid of the overall energy balance mentioned above.
The two profilest corresponding to T = 1.2 show that
the profile from ref. [13] is always beyond that of the
present study over the ranges shown in Fig. 5. The
energy associated with the temperature profiles from
the present numerical method represents the sum of
the energy initially contained in the system and the
amount of energy generated and stored within the
system until t = 1.2 within a tolerance of 0.1%. There-
fore, the results from ref. [13} can probably be thought
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FiG. 5. Dimensionless temperature distribution of the system for the case of 4 = 1, ¢ = 1, Ste = 2, and

ki/ky = 1. This work,

to have created parasitical heat sources, and their
effects on the temperature distribution become detect-
able at a large value of 7.

This argument is consistent with the results shown
in Fig. 6 which demonstrates the dependence of the
transient solid layer thickness on the dimensionless
heat generation for the case of ¢ =1, Ste =1, and
k,/k, = 1. The lifetimes of the solid layers from ref.
[13] are always significantly lower than those obtained
by the present numerical method, thus it can be
thought that the suspected additional heat sources in
ref. {13] accelerate the decaying of the solid layer
(except in the case of 4 = 0, in which heat generation
does not come into play).

The flexibility of the present numerical method is
noteworthy when one explores the effect of system
geometry further. The case of a heat-generating sphere
for which only a steady solution is presented in ref.
{13] can be resolved in the present study by merely

; Cheung et al. {13], ——.

changing the geometry index n. The behavior of the
freezing front in a sphere, shown in Fig. 6. indicates
that a heat-generating sphere can be cooled more eas-
ily than a heat-generating slab, as was predicted in
ref. [13].

6. EXTENSION TO MULTI-DIMENSIONAL
PROBLEMS

The numerical method formulated and tested for
1-D phase-change problems can be extended to solve
multi-dimensional problems but 2-D cases (without
density changes between phases) are considered in this
section. In general, the (x, y) rectangular coordinate
and the (x, ) cylindrical coordinate shown in Fig.
7 are transformed to new coordinates (y,. ;) where
n, = (x—X._)'6, and £ = y (or 8). With the details
omitted, the transformed conservation equations are

1.0 T n —
A=0 A=0 ,./
1 /q-‘,-
0.8} - .
. -
=~
,./ 0.3 et
$s > . N
5 0.6F /-, o - —
2. > o
=2 oS =
[4 i MY =
ol 7
. ;:'.c ./- '5.5.‘.~°‘5 -
o oy .\.\'\
. .\'\
NS S,
0.2 . ~.
\,\1.0
.
0.0 ! ~ 1 1
0 1 2 3 4

Dimensionless Time, T

F1G. 6. Dimensionless positions of the freezing front with time for the case of ¢ = I, Ste = 1,and k; k., = 1.

This work, (planar),

, spherical ; Cheung et al. [13], —.
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(a) the (x,y) coordinate system
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(b) the (x,0) coordinate system

FiG. 7. Schematic of configuration for both rectangular and cylindrical coordinates—systems composed
of N phases.

CV. X7k, , ¢T;
F,= _Pi_Lals Ji = Fh— - '(]+ﬁf)0.—
Ct 0, on;

i

_ I (:X‘ v | Xn+| X P X/
——le 55* i_n+l i P = N0+ X

.B i

(34

where | £ i< N and n =0 for a rectangular coor-
dinate, 1 for a cylindrical coordinate, respectively. The
interfacial mass and energy balances are the same as
equations (12) and (13). This can be justified by the
fact that the heat flux in the »;-direction (i.e. normal
to the phasc boundary) contributed by the second
term on the right-hand side is zero because the phase
boundary is an isotherm (thus ¢7;/¢¢ = 0 along the
phase boundary). To obtain discretization equations
from the above equations, a quite similar procedure,
as discussed previously, is applied to the terms on the
left-hand side. The treatment is implicit. while the
quantities X/s (thus s, 8.'s, ¥,’s, and X,'s) can be
obtained explicitly in the same way as before. The last
two terms on the right-hand side are treated explicitly
and a linear temperature profile is used to evaluate
the gradients [24]. Also a piecewise linear profile is
used to evaluate f,.

As a test problem, consider an infinitely long cyl-
inder of square cross-section, initially filled with liquid
at its freezing temperature 7. At zero time, the sur-
face temperature is lowered to T, and maintained
constant thereafter. Then the freezing front starts
from the surface and moves inward until complete
solidification is achieved. In this example. p., ¢., and
k, are taken as constants and the dimensionless par-
ameter is the Stefan number, Ste = c.(T, —T2)/h.
Solutions are obtained only for a representative octant
of the square due to symmetry and a 20 x 20 grid is
used in the cylindrical coordinate (i.e. n =1). The

symmetry lines are adiabatic and are characterized by
B- =0 and éT,/é¢ = 0. Figure 8 shows the position
of the freezing front on the x-axis and its x-coordinate
on the diagonal obtained by the present numerical
method, where the x-axis is taken to be an adiabatic
line opposite to the diagonal. The results obtained by
Crank and Gupta [10]. Crowley [8], Allen and Severn
[25] and Lazaridis [26) are also shown for comparison.
The results of this study are in closer agreement with
those of Crowley [8]. The numerical solution of the
dimensionless time (t = «,t/{*, [ is the half-width of
the square) for complete solidification gives 0.626
while the corresponding solution from ref. [8] is
~0.625.

Next, the melting (or freezing) of a finite cylinder
of height H and radius / is considered, which was
studied originally by Duda ez al. {l5]. Only a brief
description of the problem is given here and a sketch
is shown in Fig. 9 (the details are given in ref. [15]).
The cylinder contains both the solid and liquid phases
the fusion temperature of which is 7', with the upper
phase being solid and the lower phase liquid. Initially
this system is at a steady-state condition with the
upper surface of the cylinder maintained at a tem-
perature T, (< T) and the lower surface at T.(>T):
the side surface is thermally insulated and the phase
boundary is at z = 2. At =0 the insulation is
removed and the side surface is exposed to a sur-
rounding at T, (> T,) with the constant convective
heat transfer coefficient /1, . Then the phase boundary,
Z (1, r). starts to move upward and reaches eventually
a steady-state position. For this problem, the (r. =)
coordinate is transformed into a new coordinate (<,
n)where =r,n = (—2Z,_,)/0, and the index i = 1
refers to the upper phase, / = 2 to the lower phase.
respectively. The transformed governing equations
for T,(t. ¢, ;) are
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Fi==pd 2 g B S
a=%&z=mﬁzq (35)
with the initial conditions
T.-T.,
FoF, =
Hk (T, = T)

20=27,(0,8 = (36)

kI(TI -fa+k2(7—‘z "71)

and the additional boundary conditions

=0 T
Z=0 ‘ t ‘ r
il v:sl. /
t
A
LY
3,
z=2, - l
T
Z

F1G. 9. Schematic diagram describing the phase-change prob-
lem in a cylindrical coordinate.

T)(6,5,00 =Ty, T.(t.&1) =T

ér; ez,
Y ~0v i =0» — (1.0 =0
& (¢,0,n) X (+.0)

cT, cT,
&0k, -t 4 ER k. —L
¢ lkl 6:» +$ﬁl"l E,]

i

6T, \¢Z .
k, (%—)C =63h (T~ T,)

2/ €¢

=0, (T,-T,) at {=1

at {=/land n.=0 (37)

where i = 1, 2. A sample solution is obtained for the
following case (the same as case A in ref. [13] and this
special case is chosen because an analytical solution
for the steady-state position of the phase boundary is
possible)

kz e 3 hxl H
P
CI(TZ—TO)_ 1 TI—'AO_ Tx_fo_
» =13 TZ_TO—O.S, .- T, = 0.75.
(38)

Thirty grid points were used in the radial direction
and 15 in each phase in the axial direction. Table 5
shows a comparison of the steady-state phase bound-
ary position calculated by the present numerical
method with that obtained both analytically and
numerically in ref. [15]. The present numerical method
gives exceptionally accurate results as evidenced in
Table 5.
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Table 5. Comparison of numerical solutions for steady-state location of freezing
front with analytic solution [15]

r 0.0 0.2 0.4 0.6 0.8 1.0
Analytic [15] 0.4687  0.4654 04546 04317 0.3845  0.2737
This work 0.4686 04654  0.4545 04316 0.3845  0.2737
Numerical [i5] 04710 04676 04564 0.4328  0.3845  0.2711

In Fig. 10, the dependence of the transient position
of the phase boundary on the dimensionless time t
(=x,4/17) is shown. The results of this study compare
favorably with those of Duda er al. [15]. since the
largest difference that occurs at the steady-state limit
(the numerical values of the position of the phase
boundary corresponding to this time are tabulated in
Table §) is within 1%.

6. SUMMARY

A finite-difference method based on a coordinate
transformation is developed for phase-change prob-
lems with multiple moving boundaries of irregular
shape. The coordinate transformation employed here
preserves and utilizes the conservative forms so the
conservation principle is obeyed exactly in each phase.

The resulting discretization equations are associated
with the moving control volume which undergoes
stretching/contraction (also distortion in two-dimen-
sional problems) in the physical coordinates. The
moving boundaries are treated explicitly to avoid iter-
ations, while the temperature field equations are
treated implicitly. The inconsistent heat fluxes, occur-
ring at the interfaces due to the explicit treatment of
the interfacial energy balances, are used to update the
positions of boundaries, while the mass fluxes are
always conserved throughout ail phases.

The accuracy, which is an important criterion for
numerical methods, is investigated by solving some
specific problems with large density change, heat gen-
eration, and multiple moving boundaries. The present
numerical method gives rise to good or better results.
when compared with available semi-analytical and
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F1G. 10. Comparison of numerical solution for transient position of the phase boundary. This work. ——:

Duda et al. [15],
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numerical solutions. The present numerical method
proves to be fairly general and flexible and can be
used for a wide range of phase-change problems where
phase change occurs at a distinct temperature. For
the problems where the latent heat is released over a
range of temperatures, the present numerical method
is not applicable. Although the solution method is
tested against phase-change problems, it is equally
applicable to moving boundary problems without
phase changes.
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UNE METHODE NUMERIQUE POUR LES PROBLEMES DE CHANGEMENT DE PHASE

Résumé—On développe une méthode précise aux différences finies pour les problémes de changement de
phase avec plusieurs frontiéres mobiles de forme irréguliére, en employant une transformation de coor-
données qui immobilise les frontiéres mobiles et préserve les formes conservatives des équations originales.
La méthode est tout d’abord présentée sur des probiémes monodimensionnels (avec grande variation de
densité entre les phases, génération de chaleur, et plusieurs frontiéres mobiles) puis elle est étendue aux
problémes bidimensionnels (sans changement de densité entre phase). Des solutions numériques sont
obtenues de fagon non itératives en utilisant un traitement explicite des bilans de masse et d'énergie et un
traitement implicite des équations de champ de température. La précision et la flexibilité de la méthode
numérique présentée sont vérifiées en résolvant quelques problémes de changement de phase et en com-
parant les résultats avec les solutions analytiques, semi-analytiques et numériques existantes. Les résultats
montrent que des problémes mono ou bidimensionnels de changement de phase peuvent étre traités
aisément avec une excellente précision.
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EIN NUMERISCHES VERFAHREN FUR PHASENANDERUNGSPROBLEME

Zusammenfassung—Fiir Phasendnderungsprobleme mit mehreren beweglichen, unregelmiBig geformten
Grenzen wird ein sehr genaues und effizientes Finite-Differenzen-Verfahren entwickelt. Eine Koordinaten-
Transformation hilt die beweglichen Grenzen fest und bewahrt die Form der urspriinglich giiltigen
Gleichungen. Das numerische Verfahren wird zunichst fiir eindimensionale Phaseniinderungsprobleme
dargestellt (einschlieBlich groBer Dichteunterschiede zwischen den Phasen, Wirmeerzeugung und mehreren
beweglichen Grenzen). AnschlieBend wird es auf zweidimensionale Probleme erweitert (ohne Dichte-
dnderung zwischen den Phasen). Die numerischen Lsungen ergeben sich aus einer expliziten Behandlung
der Stoff- und Energiebilanz an der Grenzfliche und einer impliziten Behandlung der Feldgleichungen fiir
die Temperatur. Die Genauigkeit und Anpassungsfihigkeit der vorliegenden numerischen Verfahren
werden durch die Ldsung einiger Phasenidnderungsprobleme und durch den Vergleich mit vorhandenen
analytischen, halb-analytischen und numerischen Ldsungen verifiziert. Die Ergebnisse zeigen, daB ein- und
zweidimensionale Phasendinderungsprobleme mit sehr guter Genauigkeit berechnet werden knnen.

YUCJIEHHBIA METOJIA PEHIEHHUS 3AJAY ®A30BOI'O IEPEXOJA

AmnoTaums—Pa3paboTaH JOCTATOYHO TOYHMIH # ppeKTHBHBIE KOHETHO-DASHOCTHLIA METON pELICHHA
3afa¥ $a3loBoro nepexoa ¢ MHOTOYHCICHAIMH ABHXYLIMMACA IPAHHLAMA HEnpaBWIbHONH Gopmul Ha
OCHOBE KOOPAMHATHOTO Npeolpa3oBaHus, QUKCHPYIOWIEro ABHXYUIHECS TPAHHMULI M COXPaHAIOWIEro
KOHCEPaTHBHYIO (POPMY MCXOHBLIX OMpPeAcANIOUHX ypasHenHil. YucneHnni MeTON CHavasa npeacras-
NIeH VIS ONHOMEPHLIX 32124 $a3080r0 Nepexosia (YIHTHIBAIOMIMX CYILECCTBCHHOC H3IMCHEHHE ILUTOTHOCTEH
MEXIy Ga3aMH, TCILIOBLIAEICHHE H HEEAMHCTBEHHOCTE ABHYIEHCS IPAaHHLL), 3 3aTeM PaCLUHpPER LA
pellIeHAs OBYMEpHBIX 3a4a¥ (Ge3 H3IMEHEHHS ITOTHOCTeH Mexay ¢alzamu). Ync/eHHBE pe3ynbTaThi
NONyYeHs HEHTEPATHBHLIM METOAOM NpeoGpa3oBaHui MexdasHeix 6anaucoB MAcCHl H JHEPTHH Ha
OCHOBE ABHOH CXeMBl H Npeofpa3oBaHHs YpaBHCHHH /LIS TEMNEPaTYPHBIX NojeH C HCNONB3IOBAHHEM
HexBHON cxeMbl. TOMHOCTH B THOKOCTh NPEIUIOKEHHOTO YHCICHHOTO METONZ MPOBEPACTCA PELUCHHEM
HEKOTOPLIX 3afay ¢ Ga30BHMH NEPEXOJAMH H CPABHEHMEM MOMYHEHHBIX Pe3yIbTaTOB C HMEIOLUMMHCH
AHANTHTHYECKMMH, TONYRHAIMTHYECKHMH M YHCICHHBIMH DEIUCHHAMH. Pe3yNbTaThl CBUACTENLCTBYIOT O
TOM, 4TO OZHO- M JABYMEpHBIe 3aAaYH $a30BOro Nepexoaa MOTYT PELIATHCH JIETKO H C BHICOKOR TOYHOC-
THIO.



